Looker will not be updating this content, nor guarantees that everything is up-to-date.
This post describes the period over period (pop) Method 3: Current Period and Previous Period highlighted in the main Methods for Period Over Period (PoP) Analysis in Looker Community post.
This example uses an order_items
table from an e-commerce dataset. The example LookML view below is the basis of this example:
All SQL in the LookML sql
parameters in the following examples is specific to the Redshift dialect and will need to be adapted to your database dialect. This open source project provides adapted examples in BigQuery, Snowflake, and MySQL dialects.
view: order_items {
sql_table_name: public.order_items ;;
dimension: id {
primary_key: yes
hidden: yes
type: number
sql: ${TABLE}.id ;;
}
dimension_group: created {
type: time
view_label: "_PoP"
timeframes: [
raw,
time,
hour_of_day,
date,
day_of_week,
day_of_week_index,
day_of_month,
day_of_year,
week,
week_of_year,
month,
month_name,
month_num,
quarter,
year
]
sql: ${TABLE}.created_at ;;
convert_tz: no
}
measure: count {
label: "Count of order_items"
type: count
hidden: yes
}
measure: count_orders {
label: "Count of orders"
type: count_distinct
sql: ${order_id} ;;
hidden: yes
}
measure: total_sale_price {
label: "Total Sales"
view_label: "_PoP"
type: sum
sql: ${sale_price} ;;
value_format_name: usd
drill_fields: [created_date]
}
}
Period-over-Period Method 3: Current Period and Previous Period - Custom Choice of Current and Previous Periods with Parameters
This method allows users to select a "previous period," which is a period of the same length immediately preceding the current selected period.
This method uses a similar approach to Method 2: Allow Users to Choose Periods with Parameters; but, instead of using parameters to select the appropriate date timeframe, the logic for the correct previous period is defined using Liquid. See the examples below:
Explore grouped by date, comparing sales in the past month to sales in the previous period of the same length:

Explore using filtered measures, without a pivot on the period to compare:

Advantages and Disadvantages
Advantages:
- Performs the same function as Method 2: Allow Users to Choose Periods with Parameters.
- Supports filtered measures.
- Provides granular control of period definition without requiring too many fields, which may confuse the user.
Disadvantages:
- Requires complex LookML modeling, including Liquid implementation.
- Overlapping periods are not supported (this requires a join).
- Only a single date field may be used (e.g., the same functionality for other date fields requires replicating all the code, per date field).
Method
- Create a
filter
field for the user to select the current period. See thecurrent_date_range
field in the LookML example below.- Apply a
sql
parameter to the filter to exclude any dates outside the chosen date range.
- Apply a
- Create a
parameter
for selecting a previous period type (e.g., previous week, previous year, etc.). See thecompare_to
parameter in the LookML example below. - Create hidden "helper" dimensions for calculating periods:
- Create a dimension to calculate the number of days in the current period. See the
days_in_period
dimension under HIDDEN HELPER DIMENSIONS in the LookML example below. - Create a dimension to calculate the start and end dates for the previous period. See the
period_2_start
andperiod_2_end
dimensions under HIDDEN HELPER DIMENSIONS in the LookML example below. - Create a dimension to calculate the ordinal value of each day in the current and previous periods (1st day, 2nd day...) to "line up" the two periods. See the
day_in_period
dimension under HIDDEN HELPER DIMENSIONS in the LookML example below. - (Optional) Create a dimension to correctly order the pivot columns. See the
order_for_period
dimension under HIDDEN HELPER DIMENSIONS in the LookML example below. - (Optional) Create a dimension to provide static labels to be used in filtered measures. See the
period_filtered_measures
under TO CREATE FILTERED MEASURES in the LookML example below.
- Create a dimension to calculate the number of days in the current period. See the
Next, create the dimensions to be selected in the Explore:
- Create a
dimension_group
that will be used as the grouping rows. See thedate_in_period
dimension_group under DIMENSIONS TO PLOT in the LookML example below.- This is constructed from the start date of the current period and the ordinal value of each day in the period.
- Create a pivot dimension that will group the dates into the current or previous period and provide user-friendly labels. See the
period
dimension under DIMENSIONS TO PLOT in the LookML example below.- If the date is between the
current_date_range
filter values, then it is in the current period. If the date is between the previous period start and previous period end dates, it is in the previous period.
- If the date is between the
- (Optional) To make filtered measures based on these custom periods, use either "last" (for the previous period) or "this" (for the current period) as the filter expression. See
current_period_sales
andprevious_period_sales
under TO CREATE FILTERED MEASURES in the LookML example below.- An additional measure can be created to calculate percent change period-over-period with the custom period filtered measures. See the
sales_pop_change
measure under TO CREATE FILTERED MEASURES in the LookML example below.
- An additional measure can be created to calculate percent change period-over-period with the custom period filtered measures. See the
LookML Example
Below is an example view file with the fields referenced above:
This example view extends theorder_items
view referenced in the introduction and in the implementation for Method 1. If you are not using Redshift, be sure to adapt any SQL in thesql
parameters to your database dialect.
### Period over Period Method 3: Custom choice of current and previous periods with parameters
# Like Method 2, but instead of using parameters to simply select the appropriate date dimension,
# we will use liquid to define the logic to pick out the correct periods for each selection.
include: "method1.view.lkml"
view: pop_parameters {
extends: [order_items]
filter: current_date_range {
type: date
view_label: "_PoP"
label: "1. Current Date Range"
description: "Select the current date range you are interested in. Make sure any other filter on Event Date covers this period, or is removed."
sql: ${period} IS NOT NULL ;;
}
parameter: compare_to {
view_label: "_PoP"
description: "Select the templated previous period you would like to compare to. Must be used with Current Date Range filter"
label: "2. Compare To:"
type: unquoted
allowed_value: {
label: "Previous Period"
value: "Period"
}
allowed_value: {
label: "Previous Week"
value: "Week"
}
allowed_value: {
label: "Previous Month"
value: "Month"
}
allowed_value: {
label: "Previous Quarter"
value: "Quarter"
}
allowed_value: {
label: "Previous Year"
value: "Year"
}
default_value: "Period"
view_label: "_PoP"
}
## ------------------ HIDDEN HELPER DIMENSIONS ------------------ ##
dimension: days_in_period {
hidden: yes
view_label: "_PoP"
description: "Gives the number of days in the current period date range"
type: number
sql: DATEDIFF(DAY, DATE({% date_start current_date_range %}), DATE({% date_end current_date_range %})) ;;
}
dimension: period_2_start {
hidden: yes
view_label: "_PoP"
description: "Calculates the start of the previous period"
type: date
sql:
{% if compare_to._parameter_value == "Period" %}
DATEADD(DAY, -${days_in_period}, DATE({% date_start current_date_range %}))
{% else %}
DATEADD({% parameter compare_to %}, -1, DATE({% date_start current_date_range %}))
{% endif %};;
}
dimension: period_2_end {
hidden: yes
view_label: "_PoP"
description: "Calculates the end of the previous period"
type: date
sql:
{% if compare_to._parameter_value == "Period" %}
DATEADD(DAY, -1, DATE({% date_start current_date_range %}))
{% else %}
DATEADD({% parameter compare_to %}, -1, DATEADD(DAY, -1, DATE({% date_end current_date_range %})))
{% endif %};;
}
dimension: day_in_period {
hidden: yes
description: "Gives the number of days since the start of each period. Use this to align the event dates onto the same axis, the axes will read 1,2,3, etc."
type: number
sql:
{% if current_date_range._is_filtered %}
CASE
WHEN {% condition current_date_range %} ${created_raw} {% endcondition %}
THEN DATEDIFF(DAY, DATE({% date_start current_date_range %}), ${created_date}) + 1
WHEN ${created_date} between ${period_2_start} and ${period_2_end}
THEN DATEDIFF(DAY, ${period_2_start}, ${created_date}) + 1
END
{% else %} NULL
{% endif %}
;;
}
dimension: order_for_period {
hidden: yes
type: number
sql:
{% if current_date_range._is_filtered %}
CASE
WHEN {% condition current_date_range %} ${created_raw} {% endcondition %}
THEN 1
WHEN ${created_date} between ${period_2_start} and ${period_2_end}
THEN 2
END
{% else %}
NULL
{% endif %}
;;
}
## ------- HIDING FIELDS FROM ORIGINAL VIEW FILE -------- ##
dimension_group: created {hidden: yes}
dimension: ytd_only {hidden:yes}
dimension: mtd_only {hidden:yes}
dimension: wtd_only {hidden:yes}
## ------------------ DIMENSIONS TO PLOT ------------------ ##
dimension_group: date_in_period {
description: "Use this as your grouping dimension when comparing periods. Aligns the previous periods onto the current period"
label: "Current Period"
type: time
sql: DATEADD(DAY, ${day_in_period} - 1, DATE({% date_start current_date_range %})) ;;
view_label: "_PoP"
timeframes: [
date,
hour_of_day,
day_of_week,
day_of_week_index,
day_of_month,
day_of_year,
week_of_year,
month,
month_name,
month_num,
year]
}
dimension: period {
view_label: "_PoP"
label: "Period"
description: "Pivot me! Returns the period the metric covers, i.e. either the 'This Period' or 'Previous Period'"
type: string
order_by_field: order_for_period
sql:
{% if current_date_range._is_filtered %}
CASE
WHEN {% condition current_date_range %} ${created_raw} {% endcondition %}
THEN 'This {% parameter compare_to %}'
WHEN ${created_date} between ${period_2_start} and ${period_2_end}
THEN 'Last {% parameter compare_to %}'
END
{% else %}
NULL
{% endif %}
;;
}
## ---------------------- TO CREATE FILTERED MEASURES ---------------------------- ##
dimension: period_filtered_measures {
hidden: yes
description: "We just use this for the filtered measures"
type: string
sql:
{% if current_date_range._is_filtered %}
CASE
WHEN {% condition current_date_range %} ${created_raw} {% endcondition %} THEN 'this'
WHEN ${created_date} between ${period_2_start} and ${period_2_end} THEN 'last' END
{% else %} NULL {% endif %} ;;
}
# Filtered measures
measure: current_period_sales {
view_label: "_PoP"
type: sum
sql: ${sale_price};;
filters: [period_filtered_measures: "this"]
}
measure: previous_period_sales {
view_label: "_PoP"
type: sum
sql: ${sale_price};;
filters: [period_filtered_measures: "last"]
}
measure: sales_pop_change {
view_label: "_PoP"
label: "Total Sales period-over-period % change"
type: number
sql: CASE WHEN ${current_period_sales} = 0
THEN NULL
ELSE (1.0 * ${current_period_sales} / NULLIF(${previous_period_sales} ,0)) - 1 END ;;
value_format_name: percent_2
}
}
# ---------- EXPLORE ---------- #
explore: pop_parameters {
label: "PoP Method 3: Custom choice of current and previous periods with parameters"
always_filter: {
filters: [current_date_range: "6 months", compare_to: "Year" ]
}
}