※ 本投稿はLooker Advent Calendar 2021 18日目の記事となります。
こんにちは!
Lookerで実行したクエリの結果を取得して、BigQueryのテーブルにロードする、Google Cloud Function向けのコードを書いてみました。Looker Python SDKとBigQueryのPython clientを利用しています。このワークフローは、Cloud Workflow を使って cron ジョブで自動実行するように設定することができます。
コードサンプルはこちら

使用例
-
System Activityのデータを取得する:現在のLookerの仕様上、System ActivityのLookMLはユーザーからは編集できません。このワークフローを利用して、System Activityのデータに対して実行したクエリの結果を取得し、直接BigQueryにロードすることができます。そのBigQueryのテーブルをLookerのコネクションとして登録すれば、LookMLのデータモデリングを追加してユーザーが自由に編集できるSystem Activityのデータモデルを作成することができます。(現在、Lookerのシステムアクティビティには最大100,000行または過去90日分のクエリ履歴とeventデータが保存されています。)
-
別のDBからBigQueryへのデータ転送 : 他のDBデータからのデータをLookerで実行したクエリの結果を取得して、BigQueryのテーブルにロード
注意事項
-
Google Cloud Functionは簡単に設定でき、軽い処理の実行に適しています。重い処理を実行する場合は、LookerのネイティブActions(Google Cloud Storage、 S3への送信)や、追加でETL/ELTツール(GCPのDataflowなど)を利用することを検討してください。
-
System Activityのパフォーマンス等に柔軟性を持たせるために、Elite System Activityの利用の検討をお勧めします。
ご質問等がございましたらぜひコメントください!